This is a short, animated visual proof showing the sum of the infinite geometric series with first term 6/7 and ratio 1/7, which in turn allows us to compute the sum of the series of powers of 1/7 and determine an interesting base 7 representation of 1.
If you like this video, consider subscribing to the channel or consider buying me a coffee: https://www.buymeacoffee.com/VisualPr.... Thanks!
For a longer, wordless version of this animation with two other proofs, see • Three Geometric Series in an Equilate...
Also, check out my playlist on geometric sums/series: • Geometric Sums
This animation is based on a proof by Stephan Berendonk (2020) from the November 2020 issue of The College Mathematics Journal, (https://doi.org/10.1080/07468342.2020... p. 385)
#mathshorts #mathvideo #math #calculus #mtbos #manim #animation #theorem #pww #proofwithoutwords #visualproof #proof #iteachmath #geometricsums #series #infinitesums #infiniteseries #geometric #geometricseries #equilateraltriangle
To learn more about animating with manim, check out:
https://manim.community
Смотрите видео 0.66666… = 1 (in base 7) онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Mathematical Visual Proofs 17 Июнь 2024, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 387,805 раз и оно понравилось 25 тысяч людям.