A connected graph of order n has at least n-1 edges, in other words - tree graphs are the minimally connected graphs. We'll be proving this result in today's graph theory lesson!
We'll be using a special type of contradiction proof called a proof by minimum counterexample. If we assume that there is a graph contradicting our claim, we can consider one such graph of minimum order, then we will show that this "minimum order counterexample" is actually not a minimum order counterexample, producing a contradiction and proving our claim.
Connected graphs with one less edge than vertices NEVER have cycles, and connected graphs with no cycles are called tree graphs; check out these lesson on them...
Intro to Tree Graphs: • Intro to Tree Graphs | Trees in Graph...
Proof that a tree graph of order n has size n-1: • Proof: Tree Graph of Order n Has Size...
Proof that a connected graph with n vertices and n-1 edges is a tree graph: • Proof: Graph with n Vertices and n-1 ...
◆ Donate on PayPal: https://www.paypal.me/wrathofmath
◆ Support Wrath of Math on Patreon: / wrathofmathlessons
I hope you find this video helpful, and be sure to ask any questions down in the comments!
+WRATH OF MATH+
Follow Wrath of Math on...
● Instagram: / wrathofmathedu
● Facebook: / wrathofmath
● Twitter: / wrathofmathedu
My Music Channel: / seanemusic
Смотрите видео Proof: Connected Graph of Order n Has at least n-1 Edges | Graph Theory онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Wrath of Math 31 Июль 2020, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 18,468 раз и оно понравилось 230 людям.