We introduce Rolle's theorem which we will later use in a proof of the Mean Value theorem. Rolle's theorem states that if a function is continuous on [a,b] and differentiable on (a,b), and f(a)=f(b), then there exists a point c in (a,b) so that f'(c)=0, that is - a place where the derivative is 0. We'll prove Rolle's theorem and go through two examples of using Rolle's theorem. In the first example we will find two x-intercepts of our function then use Rolle's theorem, and in the other example we will use Rolle's theorem to prove a cubic has only one root. #calculus1 #apcalculus
Join Wrath of Math to get exclusive videos, lecture notes, and more:
/ @wrathofmath
Calculus 1 Exercises playlist: • Calculus 1 Exercises
Calculus 1 playlist: • Calculus 1
Get the textbook for this course! https://amzn.to/3PieD1M
0:00 Intro
0:15 Rolle's Theorem
1:00 Rolle's Theorem Visualized
2:27 Proof of Rolle's Theorem
5:33 Example 1 of using Rolle's Theorem
7:30 Example 2 of using Rolle's Theorem
10:25 Conclusion
★DONATE★
◆ Support Wrath of Math on Patreon: / wrathofmathlessons
◆ Donate on PayPal: https://www.paypal.me/wrathofmath
Outro music by Ben Watts and is available for channel members.
Follow Wrath of Math on...
● Instagram: / wrathofmathedu
● TikTok: / wrathofmathedu
● X: https://x.com/wrathofmathedu
● Facebook: / wrathofmath
Смотрите видео Rolle's Theorem Explained (with proof) | Calculus 1 онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Wrath of Math 23 Август 2024, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 551 раз и оно понравилось 37 людям.