install nvidia docker digits in ubantu 18. 04 and 18 .10

Опубликовано: 16 Ноябрь 2018
на канале: RANDOM NEURAL MONK
5,114
11

**************************************************************************************************
Rapidly Create an Image Classifier with Tensor Flow using docker

https://askmacgyver.com/blog/tutorial...
https://github.com/MacgyverCode/Image...

Download the Tensor Flow Docker Container

$ docker pull macgyvertechnology/tensorflow



Stand Up the Container

docker run -it -d macgyvertechnology/tensorflow




List Running Containers

docker ps -a


Log Into Tensor Flow Container

docker exec -it container_id bash


From Within the Tensor Flow Docker Container Shell

Create a folder called "training_images" with subdirectories for each image category we want to include in our model.

mkdir training_images

Structure the folders like the following. The model will create labels from the names of the folders. So in this case there will be three categories: "pens", "laptops", "chairs". The names and file extensions of these images don't matter.

/training_images
/pens
image1.jpg
image2.jpg
...
/laptops
/chairs

Copy this directory from our local machine into our docker container.



Copy this directory from our local machine into our docker container.

docker cp training_images _container_id_:/


saktheeswaran@saktheeswaran:~/Pictures$ sudo docker cp training_images/ 10d9afdd2c0541/:

saktheeswaran@saktheeswaran:~/Pictures$ sudo docker cp test/ 10d9ddas2c0541/:

saktheeswaran@saktheeswaran:~/Pictures$ sudo docker exec -it 10d9dd2ascc0541 bash

root@10d9dd2c0541:~# cd /

root@10d9dd2c0541:/# ls



root@10d9dd2c0541:/# python tensorflow/tensorflow/examples/image_retraining/retrain.py \
--bottleneck_dir=/bottlenecks \
--model_dir=/inception \
--output_labels=/retrained_labels.txt \
--output_graph=/retrained_graph.pb \
--image_dir=/training_images/


Prediction

We run a prediction and pass our trained model "retrained_graph.pb" along with out labels "retrained_labels.txt" as well as our novel test image "test-image.jpeg".


python tensorflow/tensorflow/examples/image_retraining/label_image.py \
--graph=/retrained_graph.pb \
--labels=/retrained_labels.txt \
--image=/test-image.jpeg


for more information on excecuting the tutorial is here



https://stackoverflow.com/questions/2...


***************************************************************************************************
install docker

https://docs.docker.com/v17.09/engine...

install docker

https://github.com/NVIDIA/nvidia-docker


to run digits

https://stackoverflow.com/questions/2...

E: Unable to locate package nvidia-docker

https://nvidia.github.io/nvidia-docker/

https://nvidia.github.io/nvidia-docker/

https://github.com/NVIDIA/nvidia-dock...


https://github.com/NVIDIA/nvidia-dock...

https://chunml.github.io/ChunML.githu...

E: Unable to locate package nvidia-docker

https://nvidia.github.io/nvidia-docker/

https://nvidia.github.io/nvidia-docker/

https://github.com/NVIDIA/nvidia-dock...


https://github.com/NVIDIA/nvidia-dock...

https://chunml.github.io/ChunML.githu...

nvidia-docker run --name digits -d -p 8888:5000 nvcr.io/nvidia/digits

https://stackoverflow.com/questions/2...


https://stackoverflow.com/questions/2...



https://forums.docker.com/t/run-comma...


cudaErrorInsufficientDriver = 35
This indicates that the installed NVIDIA CUDA driver is older than the CUDA runtime library. This is not a supported configuration. Users should install an updated NVIDIA display driver to allow the application to run.


https://github.com/NVIDIA/DIGITS/issu...


https://github.com/NVIDIA/DIGITS/issu...


https://docs.nvidia.com/deeplearning/...

https://docs.nvidia.com/deeplearning/...


https://docs.nvidia.com/deeplearning/...

Image Classification (Keras) For Idiots - Bill Gates vs Jeff Bezos

https://github.com/jrjames83/Keras-Ga...

   • Image Classification (Keras) For Idio...  


Смотрите видео install nvidia docker digits in ubantu 18. 04 and 18 .10 онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь RANDOM NEURAL MONK 16 Ноябрь 2018, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 5,114 раз и оно понравилось 11 людям.