**************************************************************************************************
Rapidly Create an Image Classifier with Tensor Flow using docker
https://askmacgyver.com/blog/tutorial...
https://github.com/MacgyverCode/Image...
Download the Tensor Flow Docker Container
$ docker pull macgyvertechnology/tensorflow
Stand Up the Container
docker run -it -d macgyvertechnology/tensorflow
List Running Containers
docker ps -a
Log Into Tensor Flow Container
docker exec -it container_id bash
From Within the Tensor Flow Docker Container Shell
Create a folder called "training_images" with subdirectories for each image category we want to include in our model.
mkdir training_images
Structure the folders like the following. The model will create labels from the names of the folders. So in this case there will be three categories: "pens", "laptops", "chairs". The names and file extensions of these images don't matter.
/training_images
/pens
image1.jpg
image2.jpg
...
/laptops
/chairs
Copy this directory from our local machine into our docker container.
Copy this directory from our local machine into our docker container.
docker cp training_images _container_id_:/
saktheeswaran@saktheeswaran:~/Pictures$ sudo docker cp training_images/ 10d9afdd2c0541/:
saktheeswaran@saktheeswaran:~/Pictures$ sudo docker cp test/ 10d9ddas2c0541/:
saktheeswaran@saktheeswaran:~/Pictures$ sudo docker exec -it 10d9dd2ascc0541 bash
root@10d9dd2c0541:~# cd /
root@10d9dd2c0541:/# ls
root@10d9dd2c0541:/# python tensorflow/tensorflow/examples/image_retraining/retrain.py \
--bottleneck_dir=/bottlenecks \
--model_dir=/inception \
--output_labels=/retrained_labels.txt \
--output_graph=/retrained_graph.pb \
--image_dir=/training_images/
Prediction
We run a prediction and pass our trained model "retrained_graph.pb" along with out labels "retrained_labels.txt" as well as our novel test image "test-image.jpeg".
python tensorflow/tensorflow/examples/image_retraining/label_image.py \
--graph=/retrained_graph.pb \
--labels=/retrained_labels.txt \
--image=/test-image.jpeg
for more information on excecuting the tutorial is here
https://stackoverflow.com/questions/2...
***************************************************************************************************
install docker
https://docs.docker.com/v17.09/engine...
install docker
https://github.com/NVIDIA/nvidia-docker
to run digits
https://stackoverflow.com/questions/2...
E: Unable to locate package nvidia-docker
https://nvidia.github.io/nvidia-docker/
https://nvidia.github.io/nvidia-docker/
https://github.com/NVIDIA/nvidia-dock...
https://github.com/NVIDIA/nvidia-dock...
https://chunml.github.io/ChunML.githu...
E: Unable to locate package nvidia-docker
https://nvidia.github.io/nvidia-docker/
https://nvidia.github.io/nvidia-docker/
https://github.com/NVIDIA/nvidia-dock...
https://github.com/NVIDIA/nvidia-dock...
https://chunml.github.io/ChunML.githu...
nvidia-docker run --name digits -d -p 8888:5000 nvcr.io/nvidia/digits
https://stackoverflow.com/questions/2...
https://stackoverflow.com/questions/2...
https://forums.docker.com/t/run-comma...
cudaErrorInsufficientDriver = 35
This indicates that the installed NVIDIA CUDA driver is older than the CUDA runtime library. This is not a supported configuration. Users should install an updated NVIDIA display driver to allow the application to run.
https://github.com/NVIDIA/DIGITS/issu...
https://github.com/NVIDIA/DIGITS/issu...
https://docs.nvidia.com/deeplearning/...
https://docs.nvidia.com/deeplearning/...
https://docs.nvidia.com/deeplearning/...
Image Classification (Keras) For Idiots - Bill Gates vs Jeff Bezos
https://github.com/jrjames83/Keras-Ga...
• Image Classification (Keras) For Idio...
Watch video install nvidia docker digits in ubantu 18. 04 and 18 .10 online without registration, duration hours minute second in high quality. This video was added by user RANDOM NEURAL MONK 16 November 2018, don't forget to share it with your friends and acquaintances, it has been viewed on our site 5,114 once and liked it 11 people.