A talk by Merve Alanyali from Allianz Personal.
This session covers Explaining explainability: an interdisciplinary approach to communicate machine learning outcomes.
Explainable AI (XAI) is one of the hottest topics of interest among AI researchers and practitioners. These explanations however often focus solely around providing technical interpretations on how a given machine learning model generates a certain outcome. To take a step beyond these technical explanations, we, Allianz Personal data science team together with our collaborators from the University of Bristol, investigated explaining AI decision making through a socio-technical lens. In my talk, I will reflect on the insights gained from setting up an interdisciplinary collaboration between industry and academia as well as how we extended the concept of XAI with our multidisciplinary collaboration.
Technical Level: Introductory level/students (some technical knowledge needed)
This session was part of the Data Science Festival MayDay event 2024. Find out more at https://datasciencefestival.com/event...
The Data Science Festival is the place for data-driven people to come together, share cutting-edge ideas, and solve real-world problems. We run monthly events, meet-ups, and the biggest free-to-attend data festivals in the UK. Join the community at https://datasciencefestival.com/
Watch video Explaining explainability: an interdisciplinary approach to communicate machine learning outcomes online without registration, duration hours minute second in high quality. This video was added by user Data Science Festival 14 June 2024, don't forget to share it with your friends and acquaintances, it has been viewed on our site 5 once and liked it people.