Explaining explainability: an interdisciplinary approach to communicate machine learning outcomes

Опубликовано: 14 Июнь 2024
на канале: Data Science Festival
52
2

A talk by Merve Alanyali from Allianz Personal.

This session covers Explaining explainability: an interdisciplinary approach to communicate machine learning outcomes.

Explainable AI (XAI) is one of the hottest topics of interest among AI researchers and practitioners. These explanations however often focus solely around providing technical interpretations on how a given machine learning model generates a certain outcome. To take a step beyond these technical explanations, we, Allianz Personal data science team together with our collaborators from the University of Bristol, investigated explaining AI decision making through a socio-technical lens. In my talk, I will reflect on the insights gained from setting up an interdisciplinary collaboration between industry and academia as well as how we extended the concept of XAI with our multidisciplinary collaboration.

Technical Level: Introductory level/students (some technical knowledge needed)

This session was part of the Data Science Festival MayDay event 2024. Find out more at https://datasciencefestival.com/event...

The Data Science Festival is the place for data-driven people to come together, share cutting-edge ideas, and solve real-world problems. We run monthly events, meet-ups, and the biggest free-to-attend data festivals in the UK. Join the community at https://datasciencefestival.com/


Смотрите видео Explaining explainability: an interdisciplinary approach to communicate machine learning outcomes онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Data Science Festival 14 Июнь 2024, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 5 раз и оно понравилось людям.