Round 2 U.K. Maths Olympiad 2006 | Learn Two Methods | Math Olympiad Training

Опубликовано: 19 Январь 2021
на канале: GG Maths
4,193
159

This problem comes from the 2006 British Maths Olympiad Round 2.

Find the minimum possible value of x^2 + y^2 given that x and y are real numbers satisfying
xy(x^2 − y^2) = x^2 + y^2 and x =/= 0.

This is a 3½-hour paper with 4 problems, taken by students in their own schools. Based on performances in BMO 1, up to 100 students (who are eligible to represent the UK at the IMO) are invited to sit BMO 2. Marking is carried out by around ten people, under the direction of the current IMO Team Leader. Especially elegant solutions may be awarded the Christopher Bradley elegance prize.

Did you solve it?
Let me know in the comments how you solved this problem. I’d love to hear about it!

Follow me on Facebook at   / ggmaths  
Follow me on Instagram at   / gg_maths  

Test your friends and family to see if they're as quick as you.
Challenge yourself to fun and interesting maths problems and start your journey as an olympiad.
Maths videos by Giuliano Grasso - mathematics graduate from the University of East Anglia.

I post weekly maths olympiad videos for you to try and solve.

If you want to see more problems or send me your own, then subscribe here:
   / @ggmaths  


Смотрите видео Round 2 U.K. Maths Olympiad 2006 | Learn Two Methods | Math Olympiad Training онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь GG Maths 19 Январь 2021, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 4,193 раз и оно понравилось 159 людям.