A Geometry Problem | Maclaurin Olympiad | Junior Math Olympiad Preparation

Опубликовано: 24 Март 2021
на канале: GG Maths
2,739
115

A semicircle of radius 1 is drawn inside a semicircle of radius 2, as shown in the diagram, where OA = OB = 2. A circle is drawn so that it touches each of the semicircles and their common diameter, as shown.

What is the radius of the circle?

Did you solve it?
Let me know in the comments how you solved this problem. I’d love to hear about it!

Follow me on Facebook at   / ggmaths  
Follow me on Instagram at   / gg_maths  

Test your friends and family to see if they're as quick as you.
Challenge yourself to fun and interesting maths problems and start your journey as an olympiad.
Maths videos by Giuliano Grasso - mathematics graduate from the University of East Anglia.

I post weekly maths olympiad videos for you to try and solve.

If you want to see more problems or send me your own, then subscribe here:
   / @ggmaths  


Смотрите видео A Geometry Problem | Maclaurin Olympiad | Junior Math Olympiad Preparation онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь GG Maths 24 Март 2021, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 2,739 раз и оно понравилось 115 людям.