Examples with T, N, B, κ and the osculating circle, Multivariable Calculus

Опубликовано: 27 Июль 2020
на канале: Dr. Bevin Maultsby
3,347
51

Examples with T, N, B, κ and the osculating circle. We focus on the critical concepts of unit tangent, normal, and binormal vectors (T, N, B), with practical examples to illustrate their computation. We improve our understanding of curvature and the osculating circle, which plays a vital role in geometric interpretations of curve behavior. (Multivariable Calculus Unit 2 Lecture 11)

We start by examining how to compute the unit tangent vector T̂, progressing to the unit normal vector N̂ through differentiation, and finally to the unit binormal vector B̂ using the cross product. Our examples include a detailed analysis of the curve r(t) = (2 cos(t), 2 sin(t), t²) at t=0. Here, we focus on distinguishing between treating objects as functions of t and instances where it's safe to plug in specific values, like t=0.

Further, we find the radius and center coordinates of the osculating circle. Finally, we wrap up with an insightful exercise linking T̂', speed, curvature, and N̂, reinforcing the understanding of these fundamental concepts in vector calculus.

#calculus #multivariablecalculus #mathematics #math #vectorcalculus #iitjammathematics
#ParametricCurves #calculus3


Смотрите видео Examples with T, N, B, κ and the osculating circle, Multivariable Calculus онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Dr. Bevin Maultsby 27 Июль 2020, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 3,347 раз и оно понравилось 51 людям.