Inner Product Spaces and Cauchy Schwarz, Real Analysis II

Опубликовано: 07 Август 2024
на канале: Dr. Bevin Maultsby
147
10

In this lecture, we define a real inner product space, using the familiar Euclidean space R^n as a reference. We'll start with the definition of an inner product, which generalizes the dot product by maintaining key properties like positivity, non-degeneracy, multiplicativity, distributivity, and symmetry.

(MA 426 Real Analysis II, Lecture 2)

After discussing these properties in detail, we'll explore an example of an inner product space that isn't Euclidean space. We'll consider the set of continuous functions on the interval [0,1], defining an inner product using the integral of the product of two functions over this interval. We'll verify that this example satisfies all the necessary properties of an inner product space.

Finally, we'll wrap up by proving the Cauchy-Schwarz inequality. This involves demonstrating that for any two vectors in a real inner product space, the square of their inner product is less than or equal to the product of the inner products of each vector with itself.

#MathLecture #InnerProduct #LinearAlgebra #EuclideanSpace #VectorSpaces #Mathematics #MathProof #CauchySchwarz #RealAnalysis #ContinuousFunctions #MathTutorial #MathConcepts #advancedcalculus


Смотрите видео Inner Product Spaces and Cauchy Schwarz, Real Analysis II онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Dr. Bevin Maultsby 07 Август 2024, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 147 раз и оно понравилось 10 людям.