MPC-based Controller with Terrain Insight for Dynamic Legged Locomotion
Octavio Villarreal, Victor Barasuol, Patrick M. Wensing, Darwin G. Caldwell, and Claudio Semini
Accepted to: International Conference on Robotics and Automation 2020
Abstract - We present a novel control strategy for dynamic legged locomotion in complex scenarios, that considers information about the morphology of the terrain in contexts when only on-board mapping and computation are available. The strategy is built on top of two main elements: first a contact sequence task that provides safe foothold locations based on a convolutional neural network to perform fast and continuous evaluation of the terrain in search of safe foothold locations; then a model predictive controller that considers the foothold locations given by the contact sequence task to optimize target ground reaction forces. We assess the performance of our strategy through simulations of the hydraulically actuated quadruped robot HyQReal traversing rough terrain under realistic on-board sensing and computing conditions.
Pre-print of this paper available at: https://arxiv.org/abs/1909.13842
Pre-prints of all our papers can be found here: https://dls.iit.it/dls-publications
Смотрите видео MPC-based Controller with Terrain Insight for Dynamic Legged Locomotion онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Dynamic Legged Systems lab 17 Апрель 2020, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 625 раз и оно понравилось 16 людям.