Sampling and Certifying Symmetric Functions

Опубликовано: 18 Декабрь 2023
на канале: HonHai (Foxconn) QC meeting
17
0

A circuit C samples a distribution X with an error ϵ if the statistical distance between the output of C on the uniform input and X is ϵ. We study the hardness of sampling a uniform distribution over the set of n-bit strings of Hamming weight k denoted by U^{n}_{k} for _decision forests_, i.e. every output bit is computed as a decision tree of the inputs. For every k there is an O(log n)-depth decision forest sampling U^{n}_{k} with an inverse-polynomial error [Viola 2012, Czumaj 2015]. We show that for every ϵ greater than 0 there exists τ such that for decision depth τlog(n/k)/loglog(n/k), the error for sampling U^{n}_{k} is at least 1−ϵ. Our result is based on the recent robust sunflower lemma [Alweiss, Lovett, Wu, Zhang 2021, Rao 2019].
Our second result is about matching a set of n-bit strings with the image of a d-_local_ circuit, i.e. such that each output bit depends on at most d input bits. We study the set of all n-bit strings whose Hamming weight is at least n/2. We improve the previously known locality lower bound from Ω(log∗n) [Beyersdorff, Datta, Krebs, Mahajan, Scharfenberger-Fabian, Sreenivasaiah, Thomas and Vollmer, 2013] to Ω(√log n), leaving only a quartic gap from the best upper bound of O(log2n)


Смотрите видео Sampling and Certifying Symmetric Functions онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь HonHai (Foxconn) QC meeting 18 Декабрь 2023, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 17 раз и оно понравилось 0 людям.