Gradient Class Activation Mapping (GradCAM) AI Explainability Technique Applied to CathEF

Опубликовано: 10 Май 2023
на канале: JAMA Network
273
1

We developed a video-based deep neural network (DNN) called CathEF to estimate left ventricular ejection fraction (LVEF), a measure of cardiac systolic function, from standard angiogram videos of the left coronary artery. Understanding cardiac systolic function during coronary angiography can assist patient management and therapeutic decision-making. This video shows an angiogram video from a patient with normal left ventricular ejection fraction (left) and the corresponding video of guided GradCAM saliency maps (right), which as an artificial intelligence explainability technique. The guided GradCAM saliency maps highlight pixels in each frame that contribute the most to CathEF’s prediction of low LVEF in this video. Pixels predominantly around the coronary artery tree are highlighted, mainly during the systolic phase of the cardiac cycle. This provides insight into how the video-based DNN achieves its estimation of LVEF from standard coronary angiograms. Click for full case details.


Смотрите видео Gradient Class Activation Mapping (GradCAM) AI Explainability Technique Applied to CathEF онлайн без регистрации, длительностью 36 секунд в хорошем hd качестве. Это видео добавил пользователь JAMA Network 10 Май 2023, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 27 раз и оно понравилось людям.