We prove a simple result about inverse elements in groups while gunshots rattle off in the distance of the forest. If a and b are elements of a group G with identity e such that ab = e, then we can conclude that a=b^-1 and b=a^-1. So, if two elements combine to form the identity, we can conclude they are inverses of each other - even if we only have ab = e, we do not also need ba = e, which is what we prove in this lesson, just ab = e is enough! The proof is straightforward, and we'll show 3 different strategies for it.
What are Groups: • What is a Group? | Abstract Algebra
Unique Inverses Proof: • Proof: Group Elements Have Unique Inv...
Proof Group Element is the Inverse of its Inverse: • Proof: Group Element is the Inverse o...
Cancellation Law for Group Elements: • Proof: Cancellation Law for Groups | ...
#AbstractAlgebra #MathOutside
★DONATE★
◆ Support Wrath of Math on Patreon for early access to new videos and other exclusive benefits: / wrathofmathlessons
◆ Donate on PayPal: https://www.paypal.me/wrathofmath
Thanks to Robert Rennie, Barbara Sharrock, and Rolf Waefler for their generous support on Patreon!
Outro song, Alarm by Atlas: • atlas - alarm (prod. no sentences) (o...
Follow Wrath of Math on...
● Instagram: / wrathofmathedu
● Facebook: / wrathofmath
● Twitter: / wrathofmathedu
My Music Channel: / @emery3050
Смотрите видео A Simple Group Element Inverse Proof | Abstract Algebra онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Wrath of Math 31 Март 2021, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 3,078 раз и оно понравилось 110 людям.