Using fully local semantic router for agentic AI with llama.cpp LLM and HuggingFace embedding models.
There are many reasons we might decide to use local LLMs rather than use a third-party service like OpenAI. It could be cost, privacy, compliance, or fear of the OpenAI apocalypse. To help you out, we made Semantic Router fully local with local LLMs available via llama.cpp like Mistral 7B.
Using llama.cpp also enables the use of quantized GGUF models, reducing the memory footprint of deployed models and allowing even 13-billion parameter models to run with hardware acceleration on an Apple M1 Pro chip. We also use LLM grammars to enable high output reliability even from the smallest of models.
In this video, we'll use HuggingFace's MiniLM encoder, and llama.cpp's Mistral-7B-instruct GGUF quantized.
⭐ GitHub Repo:
https://github.com/aurelio-labs/seman...
📌 Code:
https://github.com/aurelio-labs/seman...
🔥 Semantic Router Course:
https://www.aurelio.ai/course/semanti...
👋🏼 AI Consulting:
https://aurelio.ai
👾 Discord:
/ discord
Twitter: / jamescalam
LinkedIn: / jamescalam
Смотрите видео Llama.cpp for FULL LOCAL Semantic Router онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь James Briggs 19 Январь 2024, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 12,384 раз и оно понравилось 233 людям.