Machine Learning | K-means Clustering

Опубликовано: 30 Сентябрь 2019
на канале: RANJI RAJ
20,320
229

Kmeans algorithm is an iterative algorithm that tries to partition the dataset into Kpre-defined distinct non-overlapping subgroups (clusters) where each data point belongs to only one group. It tries to make the inter-cluster data points as similar as possible while also keeping the clusters as different (far) as possible. It assigns data points to a cluster such that the sum of the squared distance between the data points and the cluster’s centroid (arithmetic mean of all the data points that belong to that cluster) is at the minimum. The less variation we have within clusters, the more homogeneous (similar) data points are within the same cluster.
#MachineLearning #Kmeans #Clustering
---------------------------------------------------------------------------------------------
🌐Hyperparameter video:    • Machine Learning | Hyperparameter  
🌐KMeans Python review:   • KMeans Analytical Method  
🌐KMeans Elbow Technique:    • Estimating the optimal clusters in k-...  
-----------------------------------------------------------------------------------------------------
Machine Learning 👉   • Machine Learning  

Artificial Intelligence 👉   • Artificial Intelligence Tutorials  

Cloud Computing 👉   • Cloud Computing Tutorials  

Wireless Technology 👉   • Wireless Technology Tutorials  

Data Mining 👉   • Data Mining & Business Intelligence  

Simulation Modeling 👉   • Simulation Modeling Tutorials  

Big Data 👉   • Big Data Anaytics  

Blockchain 👉   • Blockchain Technology  

IOT 👉   • Internet Of Things  


Follow me on Instagram 👉   / ngnieredteacher  
Visit my Profile 👉   / reng99  
Support my work on Patreon 👉   / ranjiraj  


Смотрите видео Machine Learning | K-means Clustering онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь RANJI RAJ 30 Сентябрь 2019, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 20,320 раз и оно понравилось 229 людям.