We introduce the intermediate value theorem for continuous functions and see how to apply the intermediate value theorem to find the roots of an equation on an interval. The intermediate value theorem states that if f is a continuous function on a closed interval [a,b] then it must take on every value between f(a) and f(b) at some point in the interval. So if N is a number between f(a) and f(b) then there exists c in (a,b) such that f(c) = N. #calculus #apcalculus
Join Wrath of Math to get exclusive videos, lecture notes, and more:
/ @wrathofmath
Continuous Functions Explained: (coming soon)
The Extreme Value Theorem: • The Extreme Value Theorem | Calculus
Using Intermediate Value Theorem to Find Roots: • Intermediate Value Theorem to Find Ro...
Calculus 1 Exercises playlist: • Calculus 1 Exercises
Calculus 1 playlist: • Calculus 1
Get the textbook for this course! https://amzn.to/3PieD1M
★DONATE★
◆ Support Wrath of Math on Patreon: / wrathofmathlessons
◆ Donate on PayPal: https://www.paypal.me/wrathofmath
Follow Wrath of Math on...
● Instagram: / wrathofmathedu
● TikTok: / wrathofmathedu
● X: https://x.com/wrathofmathedu
● Facebook: / wrathofmath
Смотрите видео Intermediate Value Theorem and Finding Zeros | Calculus 1 онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Wrath of Math 01 Июнь 2023, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 9,269 раз и оно понравилось 203 людям.