This problem comes from Day 2 of the 2015 Russian Math Olympiad for Grade 11.
Let a, b, c, d be real numbers satisfying |a|, |b|, |c|, |d| greater than 1.
Prove that 1/(a-1) + 1/(b-1) + 1/(c-1) + 1/(d-1) is greater than 0.
Did you solve it?
Let me know in the comments how you solved this problem. I’d love to hear about it!
Follow me on Facebook at / ggmaths
Follow me on Instagram at / gg_maths
Test your friends and family to see if they're as quick as you.
Challenge yourself to fun and interesting maths problems and start your journey as an olympiad.
Maths videos by Giuliano Grasso - mathematics graduate from the University of East Anglia.
I post weekly maths olympiad videos for you to try and solve.
If you want to see more problems or send me your own, then subscribe here:
/ @ggmaths
Смотрите видео Day 2 Russian Olympiad 2015 | Math Olympiad Training | Inequalities онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь GG Maths 13 Январь 2021, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 2,966 раз и оно понравилось 127 людям.