Simple Recurrent Neural Network Tutorial using Python and Keras | Build an RNN from Scratch

Опубликовано: 16 Март 2023
на канале: Bug Ninza
1,762
14

My name is Rohit.
In this tutorial, we will show you how to build a simple recurrent neural network (RNN) using Python and the Keras library. We will walk you through the code step-by-step and explain how the RNN works. You will learn how to define an input sequence, a target sequence, and train the RNN to predict the next element in the sequence. We will also discuss the importance of the stochastic gradient descent optimizer and the mean squared error loss. Whether you're new to deep learning or a seasoned pro, this tutorial is a great way to get started with RNNs. By the end of the video, you will have a working RNN that can generate predictions based on input sequences. So what are you waiting for? Let's dive into the world of recurrent neural networks!

𝐁𝐨𝐨𝐤 ( 𝐅𝐫𝐨𝐦 𝐂𝐨𝐝𝐞 𝐓𝐨 𝐂𝐨𝐧𝐧𝐞𝐜𝐭𝐢𝐨𝐧𝐬: 𝐀 𝐃𝐞𝐯𝐞𝐥𝐨𝐩𝐞𝐫’𝐬 𝐠𝐮𝐢𝐝𝐞 𝐭𝐨 𝐛𝐮𝐢𝐥𝐝𝐢𝐧𝐠 𝐚 𝐬𝐨𝐜𝐢𝐚𝐥 𝐜𝐚𝐫𝐞𝐞𝐫 )
Amazon India: https://amzn.eu/d/axYh0B4
Amazon Worldwide: https://a.co/d/acqJOYR
Gumroad (pdf): https://ninza7.gumroad.com/l/codetoco...

Don't forget to Join my discord server. I am creating a platform for next gen developers.

My social address:
Instagram:   / _ninza7  
Twitter:   / _ninza7  
Website: https://ninza7.me
Discord:   / discord  
Video widgets edited by (Kaushal):   / kaushal_2319  

Music Source: Youtube Music Library

Keywords: RNN tutorial, Recurrent Neural Network, Python, Keras, deep learning, stochastic gradient descent, mean squared error, input sequence, target sequence, prediction, machine learning, neural networks, AI

Tags: #ai #rnn #python #code #keras #machinelearning #coding #programming #deeplearning #neuralnetwork


Смотрите видео Simple Recurrent Neural Network Tutorial using Python and Keras | Build an RNN from Scratch онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Bug Ninza 16 Март 2023, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 1,762 раз и оно понравилось 14 людям.