A loss function, also known as a cost function or objective function, is a mathematical function used in deep learning to measure the difference between the predicted output and the actual output. The goal of training a deep learning model is to minimize this loss function, so that the model's predictions match the true values as closely as possible. Most of the loss functions in deep learning are non-convex such as BCE, Huber loss, MSE , Dice loss, Jaccard loss and optimizers with momentum and regularization techniques are used to solve non convex problems.
Follow us on Instagram:
/ biomedical_basics
⭕ Subscribe:
It takes a lot of time in creating these videos, so please subscribe, it would mean a lot
✅ Subscribe : / @biomedicalaibasics
⭕Playlists:
✅Deep Learning in MATLAB :
• Deep Learning in MATLAB
✅Python Biomedical Image Processing
• Python Biomedical Image Processing
✅Deep Learning
• Deep Learning
Machine Learning,Optimization,Gradient Descent,Convex optimizer
Queries: Convex Non-Convex Functions and Contour for Neural Network,convex functions neural network,nonconvex functions neural network,contours for neural network,learning monkey neural network,neural network full course,deep learning mathematics,deep learning free course,deep learning python,what is convex function,what is non convex function,convex function u0026 non convex function,convex in deep learning,lecture on non convex,lecture on convex function,optimisation using convex,optimisation in deep learning,deep learning lecture,guide to convex function, Optimizers in deep Learning,optimizer in deep learning,optimization techniques in deep learning,optimization algorithms ,optimization algorithms,optimization algorithms python,optimizers python,optimizer pytorch,optimizer tensorflow,optimizer tensorflow adam,optimizer tensorflow 2, convex optimization
Смотрите видео Optimization vs Loss function | Convex Optimization онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Biomedical AI Basics 07 Июнь 2024, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 18 раз и оно понравилось 1 людям.