Topic Modeling in Python

Опубликовано: 01 Январь 1970
на канале: Epython Lab
238
9

In this topic modeling project-based tutorial, I have gone through the following steps:

In this project, I have defied a function perform_topic_modeling that takes the number of topics, documents path, and output CSV path as arguments. It then:

1. Loads the documents(Generating sample documents)
2. Preprocesses the text by removing stop words and stemming words.
3. Creates a TF-IDF vector representation of the documents.
4. Performs LDA topic modeling with the specified number of topics.
5. Extracts the document-topic weight matrix.
6. Prepares the data for CSV format, including document IDs and topic weights.
7. Saves the results to the specified CSV file.
-----------------------------------------------------------------------------------
💰Donate to us at https://donorbox.org/donate-epythonlab

Join this channel to get exclusive access:
https://bit.ly/363MzLo
----------------------------------------------------------------------------------
Join the discussion groups:

💻 Telegram: https://epythonlab.t.me/

💻 Facebook:   / epythonlab1  

💻 Twitter:   / epythonlab1  
-----------------------------------------------------------------------------------
COME AGAIN!
-----------------------------------------------------------------------------------


Смотрите видео Topic Modeling in Python онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Epython Lab 01 Январь 1970, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 23 раз и оно понравилось людям.