Here I wrap up this circle of ideas by giving examples of using the collapse operation c on the kinds of ordinals we were already using to create huge numbers. I show that c(tau[n+1]) = tau[n], which is exactly what we knew we needed to find an ordinal tau such that g "catches up" to f at tau. If you just want big numbers, I suggest contemplating the awesomeness of f_{tau+1}(3).
Смотрите видео Ridiculously Huge Numbers (Part 46) онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь David Metzler 29 Июнь 2017, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 9,422 раз и оно понравилось 93 людям.