In this video, we will continue with our use of the Tweepy Python module and the code that we wrote.
We will be making use of the "TextBlob" module to do some rudimentary sentiment analysis on the tweets that we stream. The sentiment analysis engine provided by TextBlob is already trained on data, so we just need to apply it to our tweet data (once we clean the tweet appropriately). We then add the sentiment analysis information into our data frame.
Relevant Links:
Part 1: • Twitter API with Python: Part 1 -- St...
Part 2: • Twitter API with Python: Part 2 -- Cu...
Part 3: • Twitter API with Python: Part 3 -- An...
Part 4: • Twitter API with Python: Part 4 -- Vi...
Part 5: • Twitter API with Python: Part 5 -- Se...
Tweepy Website:
http://www.tweepy.org/
Cursor Docs:
http://docs.tweepy.org/en/v3.5.0/curs...
API Reference:
http://docs.tweepy.org/en/v3.5.0/api....
GitHub Code for this Video:
https://github.com/vprusso/youtube_tu...
My Website:
vprusso.github.io
Do you like the development environment I'm using in this video? It's a customized version of vim that's enhanced for Python development. If you want to see how I set up my vim, I have a series on this here:
http://bit.ly/lp_vim
If you've found this video helpful and want to stay up-to-date with the latest videos posted on this channel, please subscribe:
http://bit.ly/lp_subscribe
Смотрите видео Twitter API with Python: Part 5 -- Sentiment Analysis онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь LucidProgramming 03 Август 2018, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 16,937 раз и оно понравилось 282 людям.