Monitoring and Quality Assurance of Complex ML Deployments via Assertions - with Stanford Dawn Lab

Опубликовано: 27 Октябрь 2021
на канале: Scale AI
760
9

Machine Learning (ML) is increasingly being deployed in complex situations by teams. While much research effort has focused on the training and validation stages, other parts have been neglected by the research community. In this talk, Daniel Kang will describe two abstractions (model assertions and learned observation assertions) that allow users to input domain knowledge to find errors at deployment time and in labeling pipelines. He will show real-world errors in labels and ML models deployed in autonomous vehicles, visual analytics, and ECG classification that these abstractions can find. I'll further describe how they can be used to improve model quality by up to 2x at a fixed labeling budget. This work is being conducted jointly with researchers from Stanford University and Toyota Research Institute.


Смотрите видео Monitoring and Quality Assurance of Complex ML Deployments via Assertions - with Stanford Dawn Lab онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Scale AI 27 Октябрь 2021, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 760 раз и оно понравилось 9 людям.