Using a simple combinatorical argument, we can prove an important theorem in topology without any sophisticated machinery.
Brouwer's Fixed Point Theorem: Every continuous mapping f(p) from between closed balls of the same dimension have a fixed point where f(p)=p.
Sperner's Lemma: Every Sperner covering of a triangulation - that is, unique colors on exterior vertices, edges inherent the colors between the vertices, and insides inherent any of the colors - contains at least one triangle with vertices of all three colors.
We require exactly no technical machinery to prove Sperner's Lemma. To prove Brouwer from Sperner we do need one major theorem, Bolzano-Weierstrauss, which shows the existence of convergent subsequences on closed and bounded regions.
Leave the proof of the general case for n greater than 2 in the comments!
BECOME A MEMBER:
►Join: / @drtrefor
MATH BOOKS & MERCH I LOVE:
► My Amazon Affiliate Shop: https://www.amazon.com/shop/treforbazett
Смотрите видео A beautiful combinatorical proof of the Brouwer Fixed Point Theorem - Via Sperner's Lemma онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Dr. Trefor Bazett 11 Март 2018, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 30,802 раз и оно понравилось 944 людям.