In this video, we'll learn how to build a system to recommend new books. We'll build on part 1 of this series and customize our recommendations with collaborative filtering. We'll start by exploring our dataset. Then, we'll filter our data to reduce the row count (one file is 228M rows!). Next, we'll create a collaborative filtering matrix and use cosine similarity to find users who have similar taste in books. Then, we'll get recommendations and rank them.
Along the way, we'll use pandas, scikit-learn, and numpy. You'll learn about processing large data sets, tf-idf, cosine similarity, and styling pandas DataFrame columns.
By the end, you'll have a personalized list of book recommendations, and a project that you can put into your portfolio. If you want to see part 1, you can find it here: • Build A Book Recommendation System Wi... .
You can find the project code here: https://github.com/dataquestio/projec...
And you can download the data from these links:
books_titles.json - https://drive.google.com/file/d/1Iqv9...
goodreads_interactions.csv - https://drive.google.com/open?id=1zmy...
book_id_map.csv - https://drive.google.com/uc?id=1CHTAa...
liked_books.csv - https://drive.google.com/file/d/1dhPh...
Chapters
00:00 Introduction
00:49 Project overview
03:31 Reading in books we like
05:34 Finding similar users
12:56 Finding similar user book ratings
14:51 Creating a user/book matrix
24:35 Finding users similar to us
29:29 Creating book recommendations
31:42 Ranking our book recommendations
37:36 Improve the display of the books
39:48 Next steps
-----------------------------
Join 1M+ Dataquest learners today!
Master data skills and change your life.
Sign up for free: https://bit.ly/3O8MDef
Смотрите видео Book Recommendations With Collaborative Filtering and Python [part 2 of 2] онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Dataquest 25 Февраль 2022, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 13,69 раз и оно понравилось 23 людям.