Image transformation operations, including the ones provided by ImageDataGenerator class from keras, modify numpy arrays based on the user description. The modification of these arrays may yield unintended results as the data may be modified from interpolation. If the user is not careful in spotting these issues the results may turn out to be meaningless. This is especially true when working with categorical labels where each label value needs to be conserved throughout the training and prediction process.
This video walks you through this issue and also offers suggestions on how to handle data augmentation for categorical labels. Custom code for augmentation can be downloaded here: https://github.com/bnsreenu/python_fo...
Смотрите видео 150 - Warning about keras' data augmentation when working with categorical labels онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь DigitalSreeni 18 Август 2020, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 3,065 раз и оно понравилось 89 людям.