Pricing options on flow forwards by neural networks in Hilbert space
Speaker: Luca Galimberti
Abstract: We propose a new methodology for pricing options on flow forwards by applying infinite-dimensional neural networks. We recast the pricing problem as an optimization problem in a Hilbert space of real-valued function on the positive real line, which is the state space for the term structure dynamics. This optimization problem is solved by facilitating a novel feedforward neural network architecture designed for approximating continuous functions on the state space. The proposed neural net is built upon the basis of the Hilbert space. We provide an extensive case study that shows excellent numerical efficiency, with superior performance over that of a classical neural net trained on sampling the term structure curves.
paper: https://arxiv.org/pdf/2202.11606.pdf
Смотрите видео HKML S4E7 - Pricing options on flow forwards by neural networks in Hilbert space онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь HKML 19 Апрель 2022, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 445 раз и оно понравилось 9 людям.