In this video we derive the formula to compute surface area given some surface described parametrically. Thus if you have a parametric description, all you need to do is plug it into this formula. The derivation works by looking at a tiny section of surface area, and approximating this with a little tangential parallelogram whose area can be computed by the length of the cross product of r_u Delta u and r_v Delta b, the partial derivatives of the position vector with respect to the two parameters u and v. Thus the integral is effectively just summing up these little surface areas and becomes a double integral of the length of that cross product. We will see a concrete example of this in the next video in the vector calculus playlit.
MY VECTOR CALCULUS PLAYLIST:
►VECTOR CALCULUS (Calc IV) • Calculus IV: Vector Calculus (Line In...
OTHER COURSE PLAYLISTS:
►DISCRETE MATH: • Discrete Math (Full Course: Sets, Log...
►LINEAR ALGEBRA: • Linear Algebra (Full Course)
►CALCULUS I: • Calculus I (Limits, Derivative, Integ...
► CALCULUS II: • Calculus II (Integration Methods, Ser...
►MULTIVARIABLE CALCULUS (Calc III): • Calculus III: Multivariable Calculus ...
►DIFFERENTIAL EQUATIONS: • How to solve ODEs with infinite serie...
OTHER PLAYLISTS:
► Learning Math Series
• 5 Tips To Make Math Practice Problems...
►Cool Math Series:
• Cool Math Series
BECOME A MEMBER:
►Join: / @drtrefor
MATH BOOKS & MERCH I LOVE:
► My Amazon Affiliate Shop: https://www.amazon.com/shop/treforbazett
SOCIALS:
►Twitter (math based): / treforbazett
►Instagram (photography based): / treforphotography
Смотрите видео The Surface Area formula for Parametric Surfaces // Vector Calculus онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Dr. Trefor Bazett 25 Ноябрь 2020, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 68,034 раз и оно понравилось 2.1 тысяч людям.