Building a Data Pipeline

Опубликовано: 27 Июль 2021
на канале: nullQueries
8,454
534

Let's break down the common components of a big data pipeline, and how to build the overall architecture for a pipeline. And then how the tools of the most popular cloud platforms fit in, for azure, aws, and gcp.

⏯RELATED VIDEOS⏯
Using Snowflake and Databricks!:    • Using Snowflake and Databricks!  A Ha...  
Design Realtime Data Consumption:    • How to Design Realtime Data Consumpti...  

------------------------------------------------------------------------------

Data Podcast ►► https://open.spotify.com/show/4PWmW2g...
Website ►► https://www.nullqueries.com/

------------------------------------------------------------------------------

🎓Data courses (Not Produced by nullQueries)🎓
Azure Data Engineering: https://click.linksynergy.com/deeplin...
DE Essentials, hands on: https://click.linksynergy.com/deeplin...

------------------------------------------------------------------------------

📷VIDEO GEAR📷
Programming Mouse: https://amzn.to/3zEom7f
Lighting: https://amzn.to/3o8tXAM
RGB light: https://amzn.to/3o8AQBS
USB Microphone: https://amzn.to/3m3hjAt
Mixer: https://amzn.to/2ZyqMIk
XLR Microphone: https://amzn.to/3AHPZ0L

💻VIDEO SOFTWARE💻
music/stock: https://1.envato.market/rnX70y

------------------------------------------------------------------------------
For business inquiries please contact [email protected]

Some of the links in this description are affiliate links and support the channel. Thanks for the support!

------------------------------------------------------------------------------
00:00 Intro
00:35 Why a pipeline?
00:55 Collection
01:23 Ingestion
01:45 Storage
02:09 Compute
02:47 Presentation
03:05 Azure
03:35 AWS
03:57 GCP


Смотрите видео Building a Data Pipeline онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь nullQueries 27 Июль 2021, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 8,454 раз и оно понравилось 534 людям.