Simple Machine Learning GUI App with Taipy and Tensorflow

Опубликовано: 01 Январь 1970
на канале: Python Simplified
173,114
5.7k

Today we will create a beautiful machine learning GUI application! We will design a web interface, where an image classifying neural network lives 🤖🤖🤖
We will use an open source library called Taipy for our stylish Python GUI and a framework called TensorFlow for all the machine learning tasks.
By the end of this tutorial, you will understand how to process image data for machine learning tasks, you will learn how to create and save your own image processing neural networks, as well as wrapping them in a user-friendly Python website!

⭐ For more information about the Taipy GUI, checkout their GitHub repo:
https://github.com/Avaiga/taipy

🎥 RELATED TUTORIALS 🎥
----------------------------------------------------------
⭐ Anaconda Beginners Guide for Linux and Windows:
   • Anaconda Beginners Guide for Linux an...  
⭐ If _name_ == "__main__" for Python Developers:
   • If __name__ == "__main__" for Python ...  
⭐ Introduction to Neural Networks:
   • Neural Network Simply Explained - Dee...  
⭐ NumPy Arrays:
   • Ultimate Guide to NumPy Arrays - VERY...  
⭐ NumPy Operations:
   • NumPy Operations - Ultimate Guide to ...  
⭐ Introduction to Pillow:
   • Image Processing with Pillow - a Pyth...  

⏰ TIME STAMPS ⏰
----------------------------------------------------------
Part 1. Graphic Interface
00:00 - 01:08 - introduction
01:08 - 03:44 - basic Taipy GUI
03:44 - 04:41 - basic HTML webpage
04:41 - 05:02 - basic Markdown webpage
05:02 - 06:23 - image control component
06:23 - 06:56 - styling with Python
06:56 - 07:37 - file selector control component
07:37 - 08:41 - text and line breaks
08:41 - 09:57 - wireframe review and refactoring
09:57 - 13:03 - updating components on state change
13:03 - 14:43 - indicator control component
Part 2. Machine Learning
14:43 - 19:21 - create your own neural network
Part 3. Put it Together
19:21 - 20:54 - load neural network
20:54 - 23:54 - process user provided image
23:54 - 26:04 - make prediction
26:04 - 29:16 - display prediction on GUI
29:19 - 30:51 - test complete app

💻 STARTER FILES 💻
-----------------------------------------------------------
https://github.com/MariyaSha/ml_gui_app

⚡TEST THE LIVE APP ⚡
-----------------------------------------------------------
https://classifier.taipy.cloud/

☁️ DEPLOY YOUR OWN APP ☁️
-----------------------------------------------------------
You can host your app for free on Taipy's cloud (it will run for 2hrs every day, but you can always upgrade).
1️⃣ Step 1. Revise the requirements.txt file to include ONLY the following lines (no versions needed, just the names of the libraries, and please erase everything else):
taipy
tensorflow
pillow
numpy
2️⃣ Step 2. rename classifier.py to main.py.
3️⃣ Step 3. wrap the following files in a zip archive:
main.py
baseline.keras
logo.png
placeholder_image.png
4️⃣ Step 4: sign up to Taipy cloud: https://cloud.taipy.io/
5️⃣ Step 5: add a machine
6️⃣ Step 6: add an app to your machine, upload the zip archive from step 3.
7️⃣ Step 7: wait a bit... and your app is LIVE!!! 🤩🤩🤩

🤝 Connect with me 🤝
-----------------------------------------------------------
🔗 Github:
https://github.com/mariyasha
🔗 Discord:
  / discord  
🔗 LinkedIn:
  / mariyasha888  
🔗 Twitter:
  / mariyasha888  
🔗 Blog:
https://www.pythonsimplified.org

💳 Credits 💳
-----------------------------------------------------------
⭐ Beautiful titles, transitions, sound FX:
mixkit.co
⭐ Beautiful icons:
flaticon.com
⭐ Beautiful graphics:
freepik.com

#python #pythonprogramming #machinelearning #artificialintelligence #datascience #tensorflow #programming #coding #application #neuralnetworks #ml #ai #technology #computer #computerscience


Смотрите видео Simple Machine Learning GUI App with Taipy and Tensorflow онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Python Simplified 01 Январь 1970, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 173,11 раз и оно понравилось 5.7 тысяч людям.