The relationship between symmetric and asymmetric relations is that these two properties are mutually exclusive. It means that a relation cannot be both symmetric and asymmetric at the same time except R={ } . This is because symmetric relations allow for bidirectional relationships, while asymmetric relations prohibit bidirectionality and enforce a strict one-way relationship.
It is important to note that a relation can be symmetric without being asymmetric, and vice versa. For example, the relation "is a sibling of" on the set of individuals is symmetric since if person A is a sibling of person B, then person B is also a sibling of person A. However, it is not asymmetric because the relation allows for bidirectional relationships.
Contact Details (You can follow me at)
Instagram: / ahmadshoebkhan
LinkedIn: / ahmad-shoeb-957b6364
Facebook: / ahmadshoebkhan
Watch Complete Playlists:
Data Structures: • Introduction to Data Structures || Da...
Theory of Computation: • Introduction to Theory of Computation...
Compiler Design: • Ambiguous Grammar | Introduction to A...
Design and Analysis of Algorithms: • Design and Analysis of Algorithms
Graph Theory: • Introduction to Graph Theory | GATECS...
Смотрите видео Relation between symmetric and asymmetric relations | Discrete Mathematics онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь THE GATEHUB 20 Июнь 2023, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 525 раз и оно понравилось 16 людям.