Applied Machine Learning in Python Complete Course

Опубликовано: 19 Январь 2021
на канале: Nerd's lesson
12,054
316

About this Course
this course will introduce the learner to applied machine learning, focusing more on the techniques and methods than on the statistics behind these methods. The course will start with a discussion of how machine learning is different than descriptive statistics, and introduce the scikit learn toolkit through a tutorial. The issue of dimensionality of data will be discussed, and the task of clustering data, as well as evaluating those clusters, will be tackled. Supervised approaches for creating predictive models will be described, and learners will be able to apply the scikit learn predictive modelling methods while understanding process issues related to data generalizability (e.g. cross validation, overfitting). The course will end with a look at more advanced techniques, such as building ensembles, and practical limitations of predictive models. By the end of this course, students will be able to identify the difference between a supervised (classification) and unsupervised (clustering) technique, identify which technique they need to apply for a particular dataset and need, engineer features to meet that need, and write python code to carry out an analysis.

-------------------------------------------------------------------------------------------------------------------------------------
If you realllly enjoy my content, you're welcome to support me and my channel with a small donation via PayPal

Link to PayPal donation https://www.paypal.me/nerdslesson

⌨️ This course is created in collaboration with university of Colorado Boulder.


Смотрите видео Applied Machine Learning in Python Complete Course онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Nerd's lesson 19 Январь 2021, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 12,05 раз и оно понравилось 31 людям.