Where Do GROUPS Come From? | VISUAL Abstract Algebra | E1

Опубликовано: 14 Август 2022
на канале: Mathematics Flipped
3,451
189

We motivate the definition of an abstract group by looking at compositions of symmetries of geometric objects. We discover all symmetries of an equilateral triangle and compute a Cayley table of all their compositions. We then show that this results in a structure of a group, and that this group can be generated by one rotation and one reflection. We provide a glimpse into generators and relations and explain how they can be used to define the structure of a group.

This my submission for the Summer of Math Exposition 2 competition organized by ‪@3blue1brown‬

This video was created in collaboration with Dr. Matthew Macauley from Clemson University, an author of the forthcoming book Visual Algebra.
Web: http://www.math.clemson.edu/~macaule/
Twitter: @VisualAlgebra
YouTube:    / professormacauley  

CHAPTERS:
0:00 Intro
0:46 Introduction to symmetries
1:25 Symmetries of an equilateral triangle
3:13 Composing symmetries and Cayley table
8:33 Motivation for the definition of a group
10:10 What is a group?
10:30 The group of symmetries of a triangle
11:58 Rotations vs reflections
13:09 Let's kick it up another notch!
14:36 Using generators and relations to reconstruct the structure of a group
21:13 What's next and a glimpse into Cayley graphs

#mathflipped #manim #SoME2


Смотрите видео Where Do GROUPS Come From? | VISUAL Abstract Algebra | E1 онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Mathematics Flipped 14 Август 2022, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 3,451 раз и оно понравилось 189 людям.