Short lecture on Koopman's theorem for interpreting Hartree-Fock orbital energies.
The canonical form of the Hartree-Fock equations demonstrates that the Fock operator acting on a spin orbital results in the orbital energy times the same spin orbital. The orbital energy consists of the core Hamiltonian energy plus a sum of the Coulomb and exchange energy of the electron interacting with every other electron in the occupied spin orbitals. The core Hamiltonian energy is the electron's kinetic energy plus its attraction to every nucleus in the molecule. The Coulomb integrals are its classical electrostatic repulsion from every other electron in the molecule. The exchange integrals are a non-classical attraction which arise due to quantum effects necessary to satisfy the antisymmetry principle. The molecular energy is not equal to the orbital energy because the sum of orbital energies double counts electron pair repulsions. Koopman's theorem interprets the orbital energy of occupied spin orbitals as their negative ionization potential, and of virtual orbitals as their electron affinity.
Notes Slide: https://i.imgur.com/HI15aQE.png
-- About TMP Chem --
All TMP Chem content is free for everyone, everywhere, and created independently by Trent Parker.
Email: [email protected]
-- Video Links --
Course Playlist: • Computational Chemistry
Chapter Playlist: • Hartree-Fock Theory
Other Courses: • PChem Course Intros
Channel Info: • About TMP Chem
-- Social Links --
Facebook: / tmpchem
Twitter: / tmpchem
LinkedIn: / tmpchem
Imgur: https://tmpchem.imgur.com
GitHub: https://www.github.com/tmpchem
-- Equipment --
Microphone: Blue Yeti USB Microphone
Drawing Tablet: Wacom Intuos Pen and Touch Small
Drawing Program: Autodesk Sketchbook Express
Screen Capture: Corel Visual Studio Pro X8
Смотрите видео Computational Chemistry 4.21 - Koopman's Theorem онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь TMP Chem 24 Март 2018, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 12,600 раз и оно понравилось 86 людям.