Discover how to elevate text2cypher by advancing Cypher query generation through Large Language Models (LLMs). We'll explore the nuances of In-Context Learning, including few-shot learning and dynamic prompting with LangChain. Additionally, we'll dive into fine-tuning techniques, such as PEFT and LoRA, to guide you through dataset preparation and fine-tuning with Unsloth. This session is ideal for refining LLMs for precise and efficient data retrieval in Neo4j.
Guest: Geraldus Wilsen
LinkedIn / geraldus-wilsen
@geralduswilsen
Github: https://github.com/projectwilsen/neo4...
Tomaz Github: https://github.com/neo4j-labs/text2cy...
Blog: / geraldus-wilsen_how-to-fine-tune-llms-usin...
Few-Shot Prompting: https://blog.langchain.dev/few-shot-p...
llama 3.1 405b: https://build.nvidia.com/meta/llama-3...
0:00 Introduction
1:27 Importance of understanding Cypher
3:20 Introduction of the guest, Geraldus Wilsen
7:01 Inspiration to the talk
9:02 Overview of text2cypher
10:56 Explanation of in-context learning and the role of few-shot learning
12:33 Enhancing text2cypher with in-context learning and fine-tuning.
17:50 Q&A break
23:40 text2cypher Demo
#neo4j #graphdatabase #genai #llm #graphrag
Смотрите видео Neo4j Live: Enhancing text2cypher with In-Context Learning & Fine-Tuning онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Neo4j 01 Январь 1970, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 1,03 раз и оно понравилось 6 людям.