Sebastian's books: https://sebastianraschka.com/books/
Without going into the nitty-gritty details behind logistic regression, this lecture explains how/why we can consider an L1 penalty --- a modification of the loss function -- as an embedded feature selection method.
Slides: https://sebastianraschka.com/pdf/lect...
Code: https://github.com/rasbt/stat451-mach...
Links to the logistic regression videos I referenced:
https://sebastianraschka.com/blog/202...
-------
This video is part of my Introduction of Machine Learning course.
Next video: • 13.3.2 Decision Trees & Random Forest...
The complete playlist: • Intro to Machine Learning and Statist...
A handy overview page with links to the materials: https://sebastianraschka.com/blog/202...
-------
If you want to be notified about future videos, please consider subscribing to my channel: / sebastianraschka
Смотрите видео 13.3.1 L1-regularized Logistic Regression as Embedded Feature Selection (L13: Feature Selection) онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Sebastian Raschka 13 Декабрь 2021, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 5,620 раз и оно понравилось 90 людям.