For all tutorials: muratkarakaya.net
ChatGPT playlist: • All About ChatGPT
Github pages: https://kmkarakaya.github.io/Deep-Lea...
Github Repo: https://github.com/kmkarakaya/Deep-Le...
Demo Colab Notebook: https://colab.research.google.com/git...
PPT file: https://github.com/kmkarakaya/Deep-Le...
--------------------------------------------------------------------------------------------------------
Related Tutorial Playlists in English:
All Tutorials in English: https://www.youtube.com/c/MuratKaraka...
All About Transformers: • All About Transformers
Classification with Keras Tensorflow: • Classification with Keras / Tensorflow
Word Embedding in Keras: • Word Embedding in Keras
Applied Machine Learning with Python: • Applied Machine Learning with Python
How to evaluate a TensorFlow Keras model by using correct performance metrics? • How to evaluate a TensorFlow Keras mo...
---------------------------------------- TUTORIAL CONTENT------------------------------------------------------------
🚀 Welcome to Murat Karakaya Akademi! In this video, we'll explore the intricacies of language model optimization focusing on Quantization and Off-loading.
🧠💻 Learn How to Zip LLMs by Quantization & Off-Loading with a Demo Running Mixtral-8x7B on Free Colab
🌐 Key Points:
The Need for Optimization: LLMs are massive! Discover the challenges posed by large language models (LLMs) and the necessity of optimization strategies.
Quantization: Uncover the art of strategically reducing values to fit into less space.
Off-loading: Learn the technique of sharing the computational burden between GPU and CPU for efficient model execution.
Demo: Follow the steps to run the powerful Mixtral-8x7B model on Google Colab's free version.
🔍 Understanding LLM Internals:
Explore the architecture, from the Embedding Layer capturing semantic relationships to the Transformer Blocks handling long-range dependencies.
📉 Quantization Steps:
Delve into the detailed process of reducing model size and computational complexity without compromising performance.
🔄 Off-loading Techniques:
Understand the off-loading approach, including model sharding and the use of off-loading libraries for managing computational tasks.
📊 Benefits of Quantization:
Uncover the advantages of reduced model size and computational costs while maintaining accuracy.
💡 Q&A Session:
Stick around for a dynamic question and answer session where we address your queries on optimization techniques.
🔗 Access Quantized Versions:
You can access quantized versions of most LLMs on the HF Bloke’s account.
🌐 Join the Discussion:
Let's dive deep into the world of language model optimization together! Share your thoughts, questions, and experiences in the comments below. Don't forget to like, subscribe, and hit the notification bell for more insightful content!
📌 Explore Further:
Video link: https://youtube.com/live/_JLRu1HZOpY
#muratkarakayaakademi #Quantization #Offloading #LanguageModels #MLOptimization #Mixtral #MoE #GoogleColab #AI #Technology #DeepLearning #mistral #demo
Смотрите видео Learn How to Zip LLMs by Quantization & Off-Loading with a Demo Running Mixtral-8x7B on Free Colab онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Murat Karakaya Akademi 01 Январь 1970, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 361 раз и оно понравилось 16 людям.