Multiple regression: how to select variables for your model

Опубликовано: 16 Февраль 2024
на канале: R Programming 101
10,664
211

When doing linear regression, it is important to include right right variables in your model. Multiple regression differs from simple linear regression in that more than one explanatory variable is used in the model. Master variable selection in multiple regression with our concise guide! Dive into the art and science of choosing the right predictors for your statistical models. This video is perfect for data science enthusiasts, statisticians, and researchers looking to enhance their model's accuracy and efficiency. Learn about key concepts such as multicollinearity, Adjusted R-squared, stepwise regression, forward selection, and backward elimination. In this video you'll learn about using R programming for your regression analysis. R is a powerful tool when it comes to statistical analysis. Whether you're working on predictive analytics, machine learning projects, or academic research, our expert insights will help you make informed decisions on which variables to include in your multiple regression model. Boost your data analysis skills today and ensure your models are both powerful and precise!


Смотрите видео Multiple regression: how to select variables for your model онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь R Programming 101 16 Февраль 2024, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 10,664 раз и оно понравилось 211 людям.