In this video, we explore why the least squares method is closely related to the Gaussian distribution. Simply put, this happens because it assumes that the errors or residuals in the data follow a normal distribution with a mean on the regression line.
References
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Multivariate Normal (Gaussian) Distribution Explained: • Multivariate Normal (Gaussian) Distri...
Related Videos
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Why We Don't Use the Mean Squared Error (MSE) Loss in Classification: • Why We Don't Use the Mean Squared Err...
The Bessel's Correction: • Why We Divide by N-1 in the Sample Va...
Gradient Boosting with Regression Trees Explained: • Gradient Boosting with Regression Tre...
P-Values Explained: • P-Values Explained
Kabsch-Umeyama Algorithm: • Kabsch-Umeyama Algorithm - How to Ali...
Eigendecomposition Explained: • Eigendecomposition Explained
Contents
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
00:00 - Intro
00:38 - Linear Regression with Least Squares
01:20 - Gaussian Distribution
02:10 - Maximum Likelihood Demonstration
03:23 - Final Thoughts
04:33 - Outro
Follow Me
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
🐦 Twitter: @datamlistic / datamlistic
📸 Instagram: @datamlistic / datamlistic
📱 TikTok: @datamlistic / datamlistic
Channel Support
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
The best way to support the channel is to share the content. ;)
If you'd like to also support the channel financially, donating the price of a coffee is always warmly welcomed! (completely optional and voluntary)
► Patreon: / datamlistic
► Bitcoin (BTC): 3C6Pkzyb5CjAUYrJxmpCaaNPVRgRVxxyTq
► Ethereum (ETH): 0x9Ac4eB94386C3e02b96599C05B7a8C71773c9281
► Cardano (ADA): addr1v95rfxlslfzkvd8sr3exkh7st4qmgj4ywf5zcaxgqgdyunsj5juw5
► Tether (USDT): 0xeC261d9b2EE4B6997a6a424067af165BAA4afE1a
#svd #singularvaluedecomposition #eigenvectors #eigenvalues #linearalgebra
Смотрите видео Least Squares vs Maximum Likelihood онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь DataMListic 10 Июль 2024, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 21,077 раз и оно понравилось 925 людям.