PlasticityNet: Learning to Simulate Metal, Sand, and Snow for Optimization Time Integration

Опубликовано: 14 Апрель 2024
на канале: Yin Yang
7
0

PlasticityNet: Learning to Simulate Metal, Sand, and Snow for Optimization Time Integration
Xuan Li, Yadi Cao, Minchen Li, Yin Yang, Craig Schroeder, Chenfanfu Jiang
NeurIPS, 2022
====================
In this paper, we propose a neural network-based approach for learning to represent the behavior of plastic solid materials ranging from rubber and metal to sand and snow. Unlike elastic forces such as spring forces, these plastic forces do not result from the positional gradient of any potential energy, imposing great challenges on the stability and flexibility of their simulation. Our method effectively resolves this issue by learning a generalizable plastic energy whose derivative closely matches the analytical behavior of plastic forces. Our method, for the first time, enables the simulation of a wide range of arbitrary elasticity-plasticity combinations using time step-independent, unconditionally stable optimization-based time integrators. We demonstrate the efficacy of our method by learning and producing challenging 2D and 3D effects of metal, sand, and snow with complex dynamics.


Смотрите видео PlasticityNet: Learning to Simulate Metal, Sand, and Snow for Optimization Time Integration онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Yin Yang 14 Апрель 2024, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 7 раз и оно понравилось 0 людям.