Approximate Nearest Neighbor Benchmarks - Weaviate Podcast Recap

Опубликовано: 30 Май 2022
на канале: Connor Shorten
994
36

Please check out the full podcast here:    • Etienne Dilocker on ANN Benchmarks - ...  

This video is a commentary on the latest Weaviate Podcast with Etienne Dilocker on ANN Benchmarks. ANN search -- short for Approximate Nearest Neighbors -- describes algorithms that enable efficient distance comparison between an encoded query vector and a vector database. For example, we may have 1 billion vectors to search through -- we don't want to do a dot product distance between our query and 1 billion candidate vectors! This podcast describes Weaviate's efforts to benchmark HNSW within the Weaviate system and give users a sense of how performance varies with respect to each dataset (and their respective properties), as well as the hyperparameters of the HNSW algorithm.

I hope you find this useful, happy to answer any questions / hold any discussion! Thank you for watching!


Смотрите видео Approximate Nearest Neighbor Benchmarks - Weaviate Podcast Recap онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Connor Shorten 30 Май 2022, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 994 раз и оно понравилось 36 людям.