In this video, we dive into the heated debate surrounding the impact of artificial intelligence (AI) and machine learning (ML) in drug discovery and biology. Recent analyses, including Andrew Dunn’s critical review of Leash Bio’s binding prediction contest, reveal that none of the nearly 2,000 AI models performed exceptionally well, raising doubts about the current effectiveness of AI tools in tackling complex biological problems. Meanwhile, Ron Boger and Dennis Gong’s article, "Anti-TechBio," argues that the inherent complexity of biology resists algorithmic solutions, questioning whether AI can ever truly overcome these challenges. We explore whether AI's underperformance is due to subpar models or if biology’s unpredictability is a fundamental barrier. Experts suggest that focusing AI efforts on automating specific tasks, like hit prioritization and protein design, might offer more promising results. Instead of expecting AI to revolutionize drug discovery overnight, incremental improvements and targeted applications could be key to unlocking its potential in biotech. Join us as we dissect these perspectives and consider the realistic future of AI in the world of drug discovery.
Tags: #AI #MachineLearning #DrugDiscovery #Biology #LeashBio #BindingPrediction #TechBio #AntiTechBio #AIModels #Biotech #HitPrioritization #ProteinDesign #ComplexBiology #AlgorithmicSolutions #MLChallenges #DrugDevelopment #AIImpact #BiotechInnovation #ResearchDebate #AIUnderperformance
Music "Space Jazz" Kevin MacLeod (incompetech.com). Licensed under Creative Commons: By Attribution 4.0 License. http://creativecommons.org/licenses/b...
Смотрите видео AI Fails to Impress in Drug Discovery онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Netgrows Tech 07 Сентябрь 2024, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 5 раз и оно понравилось людям.