Maximizing Efficiency DataLake(Hudi) Glue ETL Jobs with Templated Approach &Serverless Architecture

Опубликовано: 07 Май 2023
на канале: Soumil Shah
689
10

Maximizing Efficiency in Data Lake (Hudi) Glue ETL Jobs with a Templated Approach and Serverless Architecture

code
https://github.com/soumilshah1995/Lak...

Article
https://www.linkedin.com/pulse/lakebo...

Are you struggling to efficiently manage ETL jobs in your data lake with multiple tables? We have a solution! Our team has adopted a templated approach with serverless architecture, allowing us to save time and minimize the amount of infrastructure code required to manage our data lake.



Our video "Maximizing Efficiency in Data Lake ETL Jobs with a Templated Approach and Serverless Architecture" explains how we use a lambda function triggered on a CRON schedule to read metadata from a DynamoDB table, and based on that metadata, trigger the appropriate Glue job with the right parameters. This allows us to use a single Glue job for multiple tables, reducing the amount of infrastructure code required to manage our data lake.



We also have an API-based microservice hosted on ECS, allowing developers to interact with Swagger UI and set up new jobs for tables easily. This framework has helped us streamline the process of ingesting new data into our data lake and minimize manual intervention required to manage ETL jobs.



Watch our video now to learn how you can implement this approach in your organization and maximize your data lake's efficiency! #ETLjobs #datalake #serverless #templatedapproach #AWSGlue #AWSLambda #serverlessarchitecture #APIbasedmicroservice #ECS #SwaggerUI #bigdata #datamanagement #dataanalytics #dataengineering


Смотрите видео Maximizing Efficiency DataLake(Hudi) Glue ETL Jobs with Templated Approach &Serverless Architecture онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Soumil Shah 07 Май 2023, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 68 раз и оно понравилось 1 людям.