MLX: Apple Silicon's Array Framework for Machine Learning
🌟 Welcome to the Ultimate MLX Tutorial! 🌟
What You'll Learn: Unlock the full potential of your Mac with Apple's groundbreaking MLX package. Dive into the world of efficient and flexible machine learning, discover insider tips on installation, and see how MLX supercharges performance with Apple silicon.
Timestamps:
0:00 Introduction to MLX
0:36 Step-by-Step Installation Guide
1:00 Key Features of MLX
2:01 Downloading and Setting Up Models
2:36 Running Large Language Models Locally
Discover the power of MLX, the new package from Apple's Machine Learning team! In this video, we'll explore how MLX enables your Mac computer to run large language models more efficiently. Get ready to dive into the world of efficient and flexible machine learning with MLX. Don't forget to subscribe for more exciting tech updates!
1. Introduction:
Developed by Apple Machine Learning Research.
Tailored for machine learning on Apple silicon.
2. Key Features:
Familiar APIs:
Python API mimicking NumPy.
C++ API reflecting Python API.
High-level packages (mlx.nn, mlx.optimizers) similar to PyTorch.
Composable Function Transformations:
Supports automatic differentiation, vectorization, and graph optimization.
Lazy Computation:
Arrays materialize only when necessary.
Dynamic Graph Construction:
Graphs adapt dynamically to argument shape changes.
Simplifies debugging, avoids slow compilations.
Multi-Device Capability:
Supports operations on CPU and GPU.
Unified Memory Model:
Shared memory for arrays.
No data transfer needed between devices.
3. Design Philosophy:
Created for machine learning researchers.
Focus on user-friendliness and efficiency.
Conceptually simple, easy to extend and improve.
Aims for rapid exploration of new ideas.
4. Inspirations:
Draws from frameworks like NumPy, PyTorch, Jax, and ArrayFire.
git clone https://github.com/ml-explore/mlx-exa...
cd mlx-examples
conda create -n mlx python=3.11
conda activate mlx
pip install -r requirements.txt
pip install mlx
curl -O https://files.mistral-7b-v0-1.mistral...
tar -xf mistral-7B-v0.1.tar
python convert.py
python mistral.py --prompt "It is a truth universally acknowledged," --temp 0
#AppleAI #MLX #UnifiedMemory #Apple #NumPy #Python #CPlusPlus #Differentiation #Vectorization #Optimization #Computation #MultiDevice #CPU #GPU #PyTorch #Jax #Memory #AI #Perceptron #Inference #Optimizers #Silicon
Смотрите видео MLX Tutorial: Apple's Bold Move in Machine Learning Arena! онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь Mervin Praison 13 Декабрь 2023, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 5,434 раз и оно понравилось 178 людям.