In this lecture, we're going to discuss about building Machine Learning models using MLlib, which is machine learning library in Apache Spark. We’ll first start with a brief introduction to machine learning, then cover best practices for distributed ML and feature engineering at scale.
-------------------------------------------------------------------------------------------------------------
Anaconda Distributions Installation link:
https://www.anaconda.com/products/dis...
----------------------------------------------------------------------------------------------------------------------
PySpark installation steps on MAC: https://sparkbyexamples.com/pyspark/h...
Apache Spark Installation links:
1. Download JDK: https://www.oracle.com/in/java/techno...
2. Download Python: https://www.python.org/downloads/
3. Download Spark: https://spark.apache.org/downloads.html
Environment Variables:
HADOOP_HOME- C:\hadoop
JAVA_HOME- C:\java\jdk
SPARK_HOME- C:\spark\spark-3.3.1-bin-hadoop2
PYTHONPATH- %SPARK_HOME%\python;%SPARK_HOME%\python\lib\py4j-0.10.9-src;%PYTHONPATH%
Required Paths:
%SPARK_HOME%\bin
%HADOOP_HOME%\bin
%JAVA_HOME%\bin
Also check out our full Apache Hadoop course:
• Big Data Hadoop Full Course
----------------------------------------------------------------------------------------------------------------------
Apache Spark Installation links:
1. Download JDK: https://www.oracle.com/in/java/techno...
2. Download Python: https://www.python.org/downloads/
3. Download Spark: https://spark.apache.org/downloads.html
Also check out similar informative videos in the field of cloud computing:
What is Big Data: • What is Big Data? | Big Data Use Case...
How Cloud Computing changed the world: • How Cloud Computing changed the world!
What is Cloud? • What is Cloud Computing?
Top 10 facts about Cloud Computing that will blow your mind! • Top 10 facts about Cloud Computing th...
Audience
This tutorial has been prepared for professionals/students aspiring to learn deep knowledge of Big Data Analytics using Apache Spark and become a Spark Developer and Data Engineer roles. In addition, it would be useful for Analytics Professionals and ETL developers as well.
Prerequisites
Before proceeding with this full course, it is good to have prior exposure to Python programming, database concepts, and any of the Linux operating system flavors.
-----------------------------------------------------------------------------------------------------------------------
Check out our full course topic wise playlist on some of the most popular technologies:
SQL Full Course Playlist-
• SQL Full Course
PYTHON Full Course Playlist-
• Python Full Course
Data Warehouse Playlist-
• Data Warehouse Full Course
Unix Shell Scripting Full Course Playlist-
• Unix Shell Scripting Full Course
-----------------------------------------------------------------------------------------------------------------------Don't forget to like and follow us on our social media accounts:
Facebook-
/ ampcode
Instagram-
/ ampcode_tutorials
Twitter-
/ ampcodetutorial
Tumblr-
ampcode.tumblr.com
-----------------------------------------------------------------------------------------------------------------------
Channel Description-
AmpCode provides you e-learning platform with a mission of making education accessible to every student. AmpCode will provide you tutorials, full courses of some of the best technologies in the world today. By subscribing to this channel, you will never miss out on high quality videos on trending topics in the areas of Big Data & Hadoop, DevOps, Machine Learning, Artificial Intelligence, Angular, Data Science, Apache Spark, Python, Selenium, Tableau, AWS , Digital Marketing and many more.
#pyspark #bigdata #datascience #dataanalytics #datascientist #spark #dataengineering #apachespark #machinelearning
Смотрите видео Machine Learning using Apache Spark MLlib | PySpark Tutorial онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь AmpCode 31 Май 2023, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 2,360 раз и оно понравилось 26 людям.