Welcome to our comprehensive numerical methods tutorial on the Middle Riemann Sums Example. In this video, we'll walk through a complete Mid-point example in addition to finding the maximum error.
The problem explored in this video states: A) Given the function f(x) = 4x^2 + 2x - I over the interval of [2,6] approximate the definite integral using the Middle Riemann Sum with n=4 equal subintervals.
B) Find the maximum error of this Middle Riemann Sum problem.
This timeline is meant to help you better understand how to solve a Middle Riemann sum problem:
0:00 Introduction
0:48 Finding step-size for Riemann Sums.
1:30 Finding Right Riemann Sum Equation.
2:57 Maximum Error of Middle Riemann Sum approximation.
3:44 Outro
Relevant Numerical Methods Playlists:
Numerical Methods Playlist:
Numerical Methods Examples Playlist:
Follow & Support StudySession:
Channel Memberships:
Email Us: StudySessionBusiness
Twitter:
Instagram:
This video is part of our Numerical Methods course. Numerical methods is about solving math problems through approximating the solution of problems that would be difficult or impossible to solve analytically. In this playlist we will cover topics such as solving systems of linear equations, solving systems of non-linear equations, numerical integration, numerical derivatives, etc..
Смотрите видео Middle Riemann Sum Example | Numerical Analysis онлайн без регистрации, длительностью 04 минут 02 секунд в хорошем hd качестве. Это видео добавил пользователь StudySession 29 Январь 2024, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 441 раз и оно понравилось 9 людям.