Design Better AI Agents With Function Calling

Опубликовано: 27 Январь 2025
на канале: AI Software Developers
3,170
131

🚀 Join my Skool community at https://www.skool.com/ai-software-dev... where you'll find extended version of this video along with the source code and 100s of AI examples. Stop wasting time with random YT sources and get straight to the source. Gain access to structured content, learn from the best and become part of a growing community. 100% money-back guarantee!

Masterclass: Using PydanticAI for Creating Multi-Agent Flows

🔗 Links & resources:
Skool: https://www.skool.com/ai-software-dev...
Newsletter: https://aidev9.substack.com
Discord server:   / discord  
PydanticAI: https://ai.pydantic.dev

Key Concepts:
🏆 Tools: Tools are crucial in PydanticAI. They provide models with additional information to enhance their responses. This is particularly beneficial when it's impractical to include all the necessary context in the system prompt or when you need to make agent behavior more deterministic.
🏆 Agent.tool Decorator: PydanticAI offers various ways to register function tools within agents, including using decorators like @agent.tool. This decorator allows you to easily define and integrate tools.
🏆 "Prepare" Parameter: This unique parameter gives developers fine-grained control over when and if a specific tool is used in an agent flow. This level of control enhances the flexibility and reliability.
🏆 Testing with Function Model: PydanticAI allows you to use a "function model" instead of a full language model (LLM) for testing purposes. This enables you to verify the functionality of your tools and ensure they are called with the correct parameters.

The tutorial presents six practical examples that progressively increase in complexity:
🚀 Hello World: This introductory example demonstrates the basic structure of a PydanticAI agent and function calling tools.
🚀 Plain Tools Agent: Introduces the concept of "plain tools" and how to define and use multiple tools within an agent without relying on context.
🚀 Tools with Context: Explores how to pass context among agents, tools, and other components, allowing tools to access and utilize relevant information from the workflow.
🚀 Passing Tools as Keywords: Demonstrates how to pass tools to agents using the "tools" keyword, offering flexibility in tool registration and usage.
🚀 Using the "Prepare" Parameter: Highlights the power of the "prepare" parameter, allowing developers to define conditions for when a tool should be executed.
🚀 Tools in Testing: Utilizes the "function model" and the Griff library to test the functionality of tools and ensure they are called correctly during development.

Key differentiators of PydanticAI compared to other agent frameworks:
💻 Fine-grained control over tool execution with the "prepare" parameter: This allows developers to define specific conditions for when a tool should be used, giving them more control over the agent's workflow compared to frameworks where agents autonomously decide tool usage.
💻 Emphasis on "plain Python" functions for tool implementation: This simplifies tool creation and integration, as developers can leverage existing Python code and libraries without needing to learn framework-specific methods.
💻 Seamless integration of tools with context passing: PydanticAI allows for smooth information flow between agents, tools, and other components, ensuring tools have access to relevant context for improved decision-making.
💻 Focus on testability: PydanticAI provides features like the "function model" and integration with libraries like Griffe.

Masterclass Series:
▶️ Part 1:    • The Best AI Agent Framework Has Arrived  
▶️ Part 2:    • From Chaos to Clarity: LLM Tracing wi...  
▶️ Part 3:    • 100% Reliable LLM Outputs with Struct...  
▶️ Part 4:    • Dramatic Improvement! Design Better A...  
▶️ Part 5:    • Design Better AI Agents With Function...  
▶️ Part 6:    • Transform You Agents with Result Vali...  
▶️ Part 7:    • Improve Agent Scalability with Depend...  
▶️ Part 8:    • Build More Reliable Agents with Retri...  
▶️ Part 9:    • Better Context Retention with Agent M...  
▶️ Part 10:    • Building Resilient Agents: Self-Refle...  
▶️ Part 11:    • Better User Experience with Streaming...  
▶️ Part 12: Achieving Precision and Efficiency with Advanced Model Settings
▶️ Part 13: Multi-Model Agents in PydanticAI: Unlocking Next-Gen AI Capabilities
▶️ Part 14: Mastering RAG in PydanticAI: Better AI Agents with Real-Time Data
▶️ Part 15: Masterclass Final Project: AI Resume Writing with Multiple Agents

Timecodes:
00:00 - Welcome to System Prompts with PydanticAI
00:05 - Introduction to PydanticAI Masterclass
00:29 - Function Tools in PydanticAI
00:48 - How to register tools
01:12 - Why use function tools?
02:05 - Coding tutorial
02:36 - Hello, World! Rolling a Die Example
03:49 - Plain tools agent
05:20 - Tools with context
07:00 - Tools with kwargs
09:38 - Using prepare parameter
13:34 - Using griffe for testing
15:30 - Summary

#ai #openai #pydantic #ollama #pydanticai #mistral #llm #developer #software #tutorial #genai #llama #local #private #chatgpt #tools #function #calling


Смотрите видео Design Better AI Agents With Function Calling онлайн без регистрации, длительностью часов минут секунд в хорошем качестве. Это видео добавил пользователь AI Software Developers 27 Январь 2025, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 3,170 раз и оно понравилось 131 людям.