Quadratics and Derivatives in Machine Learning

Опубликовано: 04 Сентябрь 2024
на канале: ByteMonk
302
16

Quadratics and derivatives play a crucial role in machine learning, particularly in optimization tasks like training models. Quadratic functions, which involve squared terms, are commonly used to represent cost functions, such as the mean squared error in regression. The parabolic shape of a quadratic function makes it easier to find its minimum point, representing the optimal solution. Derivatives, on the other hand, measure the rate of change of a function, helping to determine the direction and magnitude of adjustments needed during optimization. Techniques like gradient descent leverage derivatives to iteratively minimize cost functions, ensuring that the model learns efficiently. Together, quadratics and derivatives are fundamental tools in guiding machine learning models toward better accuracy and performance.










AWS Certification:
AWS Certified Cloud Practioner:
AWS Certified Solution Architect Associate:
AWS Certified Solution Architect Professional:


Смотрите видео Quadratics and Derivatives in Machine Learning онлайн без регистрации, длительностью 58 секунд в хорошем hd качестве. Это видео добавил пользователь ByteMonk 04 Сентябрь 2024, не забудьте поделиться им ссылкой с друзьями и знакомыми, на нашем сайте его посмотрели 302 раз и оно понравилось 16 людям.